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ABSTRACT

This paper is concerned with Lax-Wendroff methods for a class of

hyperbolic history value problems. These problems have the feature that

globally (in time) smooth solutions exist if the data ,gre sufficiently small

and that solutions develop singularities for large data. )(Wprove (second

order) convergence of the Lax-Wendroff method for smooth solutions and

investigate numerically the dependence on the initial data. Wt'demonstrate

the occurrence of shock type singularities and compare the results to the

quasilinear wave equation (without Volterra term).
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SIGNIFICANCE AND EXPLANATION

The motion of viscoelastic materials can be modelled by partial

integrodifferential equations. For several model problems, recent

investigations have been concered with the question whether or not these

equations allow the development of shocks. ) In this paper, we investigate this

question numerically. Convergence proofs for a Lax-Wendroff type method are

given. Our computed solutions confirm the predictions of previous papers.

For small data, the solutions remain smooth, but for large data

discontinuities develop.
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LAX-WWWNDrV7 NNTHODS FOR HYPESUOLZC HISTORY VALUE PRBIZM

Peter Markoich' and Michael Renardy**

Visroelastic materials are modelled by constitutive lava relating the stresm to the

history of the *train (6], [143, [15).* For most of the constitutive laws suggested by

rheosloqists (for reviews see e.g. [Ile [21, [161, [201), the functional relationship has

the form of a convolution integral. In many cases, the resulting integrodifferential

equation of motion can be regarded ae a perturbation of a hyperbolic equation [171.

This paper deals with the numerical analysis of a model equation of this form for one-

dimensional viscoelastic solids, introduced by Dafermos and Mohel 131, (41). The equation

has the form

t

(0.1) 'att u 1 b~t # )(u x s)) xdo + f(x,t)
0x

where b is a positive, bounded, smooth, integrable kernel and *,*are smooth functions
satisfying

#(0) - #(0) - 0, *1(O) >0, #' (0) >0, *'(0) -*(0) f b(?)dT > 0

0

Particular interest in this problem arises for the following reasons It is well known that

the quasilinear wave equation

(1.2) utt , ONu

need not have globally smooth solutions even if the initial data u(t 0), ut(t 0) are

smooth. Also, no damping occurs since the energy

2
(1.3) 3u)u ut(x,t)dx + J v(u (x,t))dx

*Inst. f. Angew. und Num. Math., Technische Univ. Wien, A-1040 Wien, Austria.
"fthe work of this author was supported by Deutsche Forschungsgemeinschaft.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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u
is a constant of the motion. Here O(u) - f *(o)du. On the other hand, Dafermos and

0
Nobel 131, 14) have shown that solutions to (1.1) on a finite interval (with Dirichiet or

Neumann conditions on the boundary) remain smooth and decay to zero if the initial data and

the forcing term are smooth and small in appropriate Sobolev norm.

The dissipative influence of the integral term thus acts against the formation of

singularities. However, this effect is only strong enough for mall initial data. The

analysis of similar equations (81, (131, E24) has shown that, for bounded integral kernels

(this is essential, cf. ( 83) and large data, smoothness can be lost in finite time and

shocks (i.e. discontinuities in ux and ut) can develop.

in this paper we discuss Lax-Wendroff type schemes for the numerical solution of

(10.1). The equation is, for this purpose, transformed to a system by setting u x - v,
ut.Wo

Ut

In section 3 we show that - for appropriate integration methods approximating the

Volterra term - these schemes converge of second order on any finite time interval on which

a smooth solution exists. For the stability of this method, the nondegeneracy condition

* 0 is essential, as is evident from recent work of Friedel and Oshr (5].

In section 4 we show convergence uniformly up to t - * for the case of spatially

periodic small data and the special class of kernels

N -Auo

(1.4) b(o)- I xe I XKA> 0.
i-I

Such kernels are commonly used in rheology. The proof is patterned after a new proof for

the existence of globally smooth solutions, which we present in section 2. The essential

ingredients for this proof are the stability of the trivial solution u - 0 and the

quasilinear hyperbolic nature of the equations. If the A are very big, a stiffness

problem arises in the numerical analysis, and we point out a simple modification of our

scheme which avoids this.



Section 5 is concerned with numerical experiments. Computations demonstrate that

singularities occurring for large data are indeed of shock-type (v and w have jumps).

Since the Lax-endroff method is an artificial viscosity method the shocks are not sharp.

A *shock layerm occurs whose width is proportional to the mash size (see also Kreiss (121).

Our computed solutions to (1.1) are compared to those for the corresponding

quasilinear wave equation (1.2). This comparison shows that the dissipative mechanism of

the Volterra term delays the time of the blow-up even if it Is not strong enough to avoid

the development of singularities.

It is well known that - for a scalar conservation law - the -ax-Vendroff method may

converge to a nonphysical weak solution (which does not fulfill the entropy condition), see

151, (71. For the problem (11), no theory of weak solutions and entropy conditions has

been developed yet, and the main interest here is in computing globally smooth solutions or

smooth solutions up to the blow-up time. For this purpose the second order Lax-Wendroff

scheme is superior to first order methods, which do converge to the Wright" solution for

hyperbolic conservation laws.

However, our nmnerical results indicate that (0.1) has weak solutions with shock-type

singularities.

Acknowldqgemnt: This research was motivated by a suggestion of Professor John A. Nohel.
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2. AMLALYTICAL TMORY.

I- this section, we give a new proof for the global existence of smooth solutions in

the case of mall data. (The local existence can be shown using the ideas of Kato (9),

[10], of. [171). The ideas used in this proof will serve as a guideline in our analysis of

the numerical scheme in section 4. we assume that the kernel b has the form (1.4) and

that we are dealing with spatially periodic solutions of (1.1): u(x + 2Wt) - u(x,t). For

simplicity, we also assume * - *. (For * * 4, a similar, but more technical analysis is

possible, see the remarks below). Under these conditions, the substitution v Uxt

t -(t
w - , 0 "t 

+ f e * (O( xs)) xdo yields the system
0

wx

( 2 . , ) " V v ) x "  l l K i + f

N

~1-~g1 -A~v+ + KC 4W) -f
i-i

This is a perturbation of a hyperbolic system. in order to make it symmetric hyperbolic,

we defines N(y) f .' *(y) dy, O(y) = w '(-y)) and set v = o(v). Then (2.1)
0

assumes the form

v- O(M)wX

N

(2.2) - 0(;)z - K jg(q + w ) + f

M

-A (gi +w) + I K(g t + w) - f
i-1

Clearly, S is positive in a neighborhood of 0. If # 0 #, (1.1) can still be

transformed to a symmetric hyperbolic system after differentiating the equation 171. An

analysis similar to the following can then be applied.

-4-



The analysis will consist of three steps:

(i) Show that the linearization of (2.2) at v =0, w 0, gj 0 generates a

semigroap of negative type. As a consequence, the inhomogeneous initial value problem has

a unique bounded solution for t e 10,-), If the inhomogeneous term is bounded.

(ii) Show that the same property holds for the linearization of (2.2) at

v -ov(x,t), w - wo(x,t), where va1wo are small in an appropriate norm.

(iii) Usme a contraction argument for the nonlinear problem.

For brevity, let us write z=(vtw~g1.. 9g). The operator setting up the linearization

of the right hand side of (2.2) at z=0 i* denoted by A. This operator acts Fourier-

ccmponentwise, I.e. with a Sk L k we have A; AkX'j@e * where the matrix

Akis given by ( o IW~O 0. .. ........ 0

IWSO) -EK -K . .........

0 EK A I A
Ei N I /2 KM

The characteristic equation of Ak Is

2 2 2 2. N K(2.3) A+ kB0(0) - O + -

ea 2. 1.

All sigenvalues of Ak, have negative real parts, except a double zero sigenvalue for

k - 0.

Proof.

The function defined by the loft hand side of (2.3) has simple polesi at A - -AI , and

therefore has zeros between these poles. This accounts for N - I eigenvalues of Ak. A

further eigenvalue lies between zero and - min A For A )o 0, the left hand side ofj

(2.3) is always positive. if A is complex, the imaginary part of (2.3) yields



202( N Ki(2.4) 2 ReA In A-kB(I -0
i-1 ~ +ii

Sinceth2signof-Ia--0

Since the sign of In - - is opposite to that of in A, this is only possible ifiI
Re A ( 0. For k - 0, it is easy to see that the eigenvalues of Ak are zero (two-fold)

and -A.

The presence of zero eigenvalues is inconvenient, but we can use a simple trick to get2w I
L rid of them. It can be seen that the integrals 1, = ( f c; ()dx and

2v N 1 XT !2 (g, + w) - w)dx are invariants of the motion described by (2.2),

12 =f (. I. thAoindsrie y(.)
0 i-I 1

2w
provided that f fdx is zero. We limit our attention to forces f satisfying this

0
condition and to solutions for which the two integrals vanish initially. (Physically this

means that the total force and the total momentum are zero). Such solutions also solve any

modified equation, in which certain multiples of the two integrals are added to the right

hand side of (2.2). Such a modification replacing the double zero eigenvalue by negative

eigenvalues can be found. We shall refer to the so modified equation as (2.2') and to the

modified linearized operator as A'.

As k + -, two eigenvalues of Ak have the form tikB(O) + O(1), the others

converge to distinct finite limits. Hence Ak is diagonalizable for large k. Let Tk

be a transformation matrix such that Tk  is diagonal. Th eigenvectors of

setting up the columns of Tk also have limits as k + -, and thus 
T
k can be normalized

such that, as k i , it converges to a limit To . T. has the form1; _1 0 .... 0)
1 1 0 .... 0

(2.5) T 0

• T"
00

As a consequence, both Tk and stay bounded as k + -. Therefore, by applying the

transformation

z : ka TY kS ke

kes -6-
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the linearized operator in (2.2') assumes diagonal form (up to, maybe, a finite dimensional

perturbation), and it is clear that the type of the semigroup generated by such an operator

is determined by its eigenvalues. As an easy consequence, we obtain

Corollary 2.2.

For each f Un((0,.-) - JV2,3sUIr 2 ) and each ô e HCn(/ 2 =,RW2) there exists a unique

solution z of the equation z = A' f which satisfies the initial condition

.(x,0) - .

Here l
n  

denotes the usual Soboler space, and n is arbitrary. This concludes step

Ci) of our analysis.

For abbreviation, let us now put

F(V,W,g ,..... M) - (v - B()w+ 1 0, -

x * 1~ 91 K(g + w) 0,g -12'

141+ ig + ? i(ji+ W +I v = 0),w~t - 0)))g(t )

For n 2, r is a smooth mapping from en([ 0 ,.) x W/2,3,?e2) into

Hnl-([oi ) x 2/2zt J.
2

) x Hn(32, . .2).y +  Corollary 2.2 implies that the linearized

mapping DF(O) has an inverse. As a next step, we show that DF is invertible not only

at 0, but in a neighborhood of 0 (step ii)).

Lemma 2.3.

If 0 a H([0,*) x 3/233
+
2) (n ) 2) has sufficiently mall norm, then DF(z ) has an

inverse which is bounded as a mapping from Hn (0,-) x iV2=i e+2) x Hn (/2% e3+2) into

H n ((0,.) x U/2uRN+2).

Sketch of the Proofs

We show 2-invertibility. 2sti ates for the derivatives are then easily obtained by

successively differentiating the equation. The problem lies in the fact that the

perturbations resulting from the ter m -O(C)w x  and -(v)vx are not bounded relative

to &', -id hence we need a more refined argument than standard perturbation theory.

It is well known 110] that, for O(v ) e H (R/213t), the operator

I (vw) + (S(v
0
) - 0O))N M ,; ) is a bounded perturbation of a skew-adjoint operator

3. Therefore, the linearization of (2.2') has the following structure

-7-



(2.6) -- + it; + +

where As in as above, 8 is skew-adjoint and C t L2  2 has small norm. Above, ve
Indicated how to construct a transformation T - (Tk ) W such that A1  is diagonalized,

or, if It has a degenerate eigenvalue for finite k, transformed to Jordan form. Since

all eigenvalues are negative, we can choose T such that T-lA'T is dissipative.

-_(2,;) for some a> 0. Moreover, a k + -, we have Tk - To + 0(-)

with % of the form (2.5). As a consequence T'18T - T?*1T is bounded (S is a first

order differential operator, but % - T is of order minus one). Moreover, it is easy to

see that T. S is still skew-adjoint. It follows that T W(A + B C)T is

dissipative. This implies the la---.

We have thus shown the invertibLlity of the linearization in a neighborhood of 0.

At this point, generalized Implicit function theorems (see e.g. (21]) would be appli-

cable, however, the quasiline4r nature of (2.2') admits a simpler argument. Namely,

we can write 1(;) in the quasi.inear form F(;) - L(;), where

L()z' - Do(o), + (0(0) - W(e))(w',v',,..... .e wish to solve the inhomogeneousx
problem F(W) - f. Since we have just shown that L(;) is invertible for small enough

z, we try the iteration zE - L-C(z .1)f. if the Hn-normn of f and the starting

value zI are small, the zn  stay in a small neighborhood of zero in Hn . Moreover,

we have

inX in-1- L(zszml Xa)(zxa 1  z) U (L(s _) - L(z,))z,

whence we find the estimates

Ism+1 - zln1 , CI;. - 1 s1. 1

If the Ixuln are mall enough, then the sequence z. converges in Hn-1, and it is

Immediate that the limiLt must be a solution. We thus find

Theorem 2 4.

If f e Hn((0,w) x 1V2Tst) and ;(0),w(0),g(0),...,gn(o) e Hn (3/21I23)

(n ) 2) have sufficiently small norms, then (2.2') has a solution

(;w,9,...,gn ) e Hn
( (0,.,) x /21jRs+2 which assumes the prescribed

initial values.

. -L AAL& A,;.- -



3. * LX-YINDROFF TYPE SCHEt4S -LOCA ANALYSIS

In this section we do not require the kernel b to have the special form (1.4). It

is only assumed that b is sufficiently smooth and that b~b' are in L (a +.

Equation (1.1) is transformed to a system by setting

(3.1) V-U , W V- u

This yields

(a) vt -W

(3.2)
(b) Vt # (v)x - b**(v)x + fix~t)

with the initial data

(a) v(x,O) - %;(x). x e a

(3.3)
(b) v(x,O) - u I(XC), x e R

The star denotes the convolution

t
(3.4) b~p(t) f b(t - s)p(s)ds

0

We discretise (3.2), (3.3) using a rectangular mesh. The values of the approximations to

v,w at the grid points are denoted by a lower spatial and an upper temporal index

n~ , nwi The following definition explains the details of the notation.

Definition 3.1.

Let h)>0, k >0. For n e and i6 e ve set tn 'nk, xi= ih. For

U (u i ye define the *spatial" difference quotients

n n
Au -

ui h

n n
-n i i-

i h

n n
un u -+1 u i-I
U, 2h



and the "temporal" difference quotient

nu - ±
U, k

The ideA of the Lax-Wendroff method is to approximate v(x *lt nI Wxf t by the

truncated Taylor series

(a) V(xift~i V(xift ) + kvt(xist _ v k2 if
n+1n n 2 ~tt X~n)

(3.5)

(b) W(xiot n+1 v(xi~t n) + kw t (xift n 2 + t xo

and to substitute for the t-derivatives the corresponding expressions obtained from

(3.2). The x-derivatives in these expressions are approximated by spatial difference

quotients in a symmetric way. This yields

rrI n n 2 nk
(a) vn+ n kA +i K -[e*vi e7b- (n)+

(3.6) + vi A1 2(~ - A1~ (~)

in+1 n n kf
(b) vw v + k[,,(vi) - AM v n()) + fn)

+ !
2  

+ f f~ n)) - (),(n k Mb c n)) + (ftn

for n ;P 0, i e Z, where we denoted

(3.7) f fxt) (ffl=f (xit)
fn -f~i'n) (t)i -t

k
and * is the discrete convolution operator

kc n
(3.8) b nk I a jnb(t nj)

Wie require that the weights a jnfulfill

(3.9) 0 4a jn4(1, 1 I0s + -a jI(<C,

where C is independent of m,. For example# for the trapezoidal rule an-*b1 n
-10-
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ain  1 for jm1 (1) n -1 holds. The Initial data are

"10
0=)V~ u (Xi) . i e z

(3.10)
0

(b) vI . Ul(X i ) , 1 6.

k

If * is at least second order accurate for sufficiently smooth p and b, i.e. if
t

k n
(3.11) lb * pn b(tn - s)p(s)dsl - O(k2

0

holds, then the Lax-Wendroff method (3.6), (3.10) is second order accurate (as far as the

local discretization error is ooncerned), provided that the data and solution are smooth

enough.

Thus our scheme is second-order consistent. In order to show convergence, we have to

prove stability [11]. Since the linearization is Lipschitz continuous with a Lipschitz

constant of order 0C1 )* it is sufficient to show stability for the linearization at the

exact solution, it is, however, not enough to show stability for the linearization at zero,

even if we are dealing with small solutions. Nevertheless, we analyze the stability at the

trivial solution first, since this will also give us a guideline for dealing with the

variable coefficient problem. we thus linearize (3.6) at vn w n 0, which is the

solution obtained for f= 0, Uo(X) - Ul(x) -20. This yields the constant coefficient

scheme

(a) 6 y1  Ay21 + *(O)A _y,'1 - *'()C(b ' + '

(3.12)

kk[b +O -n "l()Ay" * lb(l)A(b y yn
(b) O21 ii 1i

+ ! (41(0) y 1  bO*(hy1 0(0)h~ ' y~) q

for n 0, i e6Z, with the initial data

0
() yli " Y16i •

(3.13)
0

(b) Y21 Y20i il•

-11-



The stability analysis will proceed in the discrete L2-space

(3.14) (f . (f if e ~ 2/2 -(h I fI <W)

~If~ - lbjes

(Once stability in L 2  is known, it is easy to deduce stability is higher order discrete i
Sobolev spaces).

We assume that the Initial data in (3.13) and the inhomogeneous terms in (3.12) take

2values in

Since we wish to apply Fourier analysis, we extend (3.12) to the whole real line by
2n ndefining L (l-functions gn , gn # Y10 1 Y2 0 such that they take the prescribed values

at the grid points. We then regard (3.12), (3.13) as equations on all of R. The spatial

2difference operators are defined for L (3-functioni in the obvious way

(ey) a) -XLX-tV-- etc.

2For y e L (R) we denote the Fourier transform by yt

(3.15) Y(x) 0 y iU(s)ds

Now we prove

Lem" 3.1.

Let 0 < -- j/f*(O) < 1 and assume that #1(0) > 0. bob' e L1 (Re). and (3.9) holds.

Then the stability estimate

j-0M1n (I~ 2  'Y2 2yI

(3.16)

n Ct 0 2 Max 91 2 + 92 
Sb Lh jMo n-1 Lb %

holds for h sufficiently small. Were ;,J#y1 denotes the solution of (3.12), (3.13).

an

Proof. We apply Fourier transform and set n (y w sh. This
n ; )Ian 

q

yields the equation g

-12-
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/ ,~.- (coo W- 1)(0) k

(3.17) ;n+1(a) - 1(W);i() - '(0) (b * (,))

-ik o o cZ b(O);Z(.)) +

where

(3.)(w) + A sin W+ 2

/'(O) 0

We transform A to its diagonal form

(3.19) A "3 diag(/'(O)'-P •(0))Z7, a ( 1T1
$(0) - (0)

and set

(3.20) ;l() - 3-y ls)

We thus obtain the now difference sche

(3.21) ;n+l() - dLag((w),;(l))- (l l 1-)(b k, 1 2

#'(0) 2~)-l

k n (s) ;,,n +*t aI)
-Lki E( ( ( sini)(b' 2 2) 1 . ) 1 2, . ) - n()#'(0) ,-s i m +" b hi) 2 + ks" ,

where

2
(3.22) z(w) - 1 + i sin w + j2 (coo 0 - 1)

An easy calculation shows that I&(W)I < 1, w * 21W, 1 e 5, and z(211) - 1, provided

that 0 < V < 1. In the following, we only use that Iz(w)j < I + O(k). Hence, Is(W))n

is uniformly bounded for n 4 S. For stability on bounded intervals, ve need not be

concerned with O(k)-perturbations on the right side of (3.21) (see [191, section 3.9). It

is thus sufficient to study the perturbed problem

(3.23) n+1 - diaS(z(w),;())Wi -* (s(W) )(b k ( - j
2  + kHn#9(0) ,;(.) ,,h , - ,

-13-
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which we rewrite as

(3.24) - diag(zn(),Cn(U))O 0 - )(b + k 
2r -141,(0) (W() 1) •( ) 2 0. .J-0"

where the operator H is defined as

n ~ n n-i

(3.25) H(;J) - I diag(.'(),;n-(w))G

:)- j-

Sumation by parts yields (with ;J (w w 2 ))

n-I k.3 kk
(3.26) 1 z n'Iu( - s)(b * Vt I - zn)(b * u-)

n-2 k k
+(s - -  - zn-b .+I . b .u

Ic n-2
k. n-1 zI n- .10+1

b a -z I z[ ,.ka bi

+ kI (a ba+,. - a jb.)iJ - ksno 0 b0U 0
J-0 1,3+1 i

moreover, note that ajt+lbt+l. j - a*J b - (aJ,+ 1  - a ) bt+_j + a (b . :) - bM. j

and that b,+i. j - bait - 0(k). Using (3.9), one easily obtaLns from (3.26)

(3.27) IH((!(O) - ')(b (. nZ(W( - 2 - tn mx n
-" " -0 n-0(i)n-1

with some constant C. if we choose T such that y - CT < 1, we get from (3.23) that

(3.28) Mx IvI ( + max Iv
j
I + C1 lvOI + C2  max I

J-0(i)n J-0(1)n-I 1 + -0(1 . n-I

and hence

-14-



(3.29) IBM I;I C (C ° + c T max ,H,)
J)-0()n J-0(S)n-1

holds for t C T.n

This argument can be iterated. We may pose a now initial value problem at the grid

point nearest to t - T and continue the solution into the interval [T,2T] etc. This

yields an estimate of the form
A

(3.30) Max vV I to(l o + CiT sax On
kYCt j4(k+1)T (1 - Y) k1 1 0 J-0(1)n

for k e N. (3.16) immediately follows.

We see from this proof that solutions of the linearized problem can grow at most

exponentially. The integral has been treated as a 'lower order" perturbation and we made

no use of the fact that it has a damping influence, in fact, no conditions on the sign of

the kernel were needed here. A convergence statement reflecting the damping requires a

more sophisticated analysis. For a special case this is dealt with in section 4.

A mentioned above, we have to study the linearization at the exact solution

v(xt),v(xt) of (3.2), (3.3) rather than the linearization at the trivial solution. This

yields the scheme

On n k
2  n

- yj + My + 3- (A+A('(v(xi,tn)y - AA(b k*(v)y"i31 +k

(3.31)

n+1 nn k
(b) Y21 - 2L 

+ 
k(A(#'(v)l-i) 1 A(b ' (*'(V)y'1i)]

+ I2 (A#,(.1 (v(xi,t) + v(xi 1 t )))Ay n

n 1
+ *(1 (v(xietn) + v(x1 .t )))(y + Y - )Aw(xitn))

k

b(0)A(*'(v)yb) - b ,,)y + kg

(a) y i

(3.32)
0

(b) Y2i- Y201

-15-



Leima 3.2.

Assume 0 C4 k max 4Iivx ~t)) (1 holds and assume that b,#,# are
I xe3te(OrJ

imooth, bbl e L (e), 0g > 0. If the exact Solution vv is smooth on R X [0,T], then

an estimate of the form (3.16) holds for the solution of (3.32), (3.32) on [0,T).

Proof.

Again we may neglect terms of order k on the right hand side of (3.31), which leaves

us vith the perturbed problem

n+1 ft n k 
2  

n + - n k 
2  

k nn
(a) 1 n kAY21 T ci Av1i -- '* 2Vivi + i

(3.33)

n+l + n n k 2  
n +- n k n n n

(b) v2i v2+ k# 21L + Av921 - kAb (4'v1) + kh21

a

vhere *(v(xi,t n)). " v(xtn)) With

(3.34) AL n, V n vn HiL " n "

4 " 0 v21 h2n /

(3.33) reads

3 - . A )2A+V 2 k
(3.35) An+1 Vn + kAnAVn 2i -! (b n i ) + kHn

kA(b"* ( ,nT)

i 1i~

As before, we diagonalime An setting
i by ttn

a 
n 

n n,-

so that A± - n i  . We substitute

(3.37) V -%n

i i i
thus obtaining (after extending all grid functions to real functionst

16-



(3.38) " x) - ML.")(,) ( - ). ),)- .(b k ( - 2 -x)
*nlx)

+ kH(x) + O(k)

where L i (L2(it))2 . (2(3))2  is defined as

2

(3.39) L UlX) - Ulx) + kjn(x)AU(x) + - (jn(x))2 AA-Olx)
a 2

Rquation (3.38) can be rewritten as

n-1

u a - [ Crn'L 2 """ 
r +l ) (I - L.).• )" ."(L.

It ?Cx) + rlx)2o n-0- L+ a

(b 1Cx))(U 2 2- + L .1 ... LI)u

+ k M (zr.L.,,.. ,+ 1";

U-O .+1

Partial smaration yields

n-1
3 .4 1 ) " O M 

( n 
-1 ... 1 t+ , ) ) ( I - L I) p . - ( Z 1 - L -l L n -2 ...Y'o ) P n -1

U-0mmn-0aI

n-2
- 0 Ln_1 ... Lm+(l - L ... Lo)(pn4 1 - ps)

The *local" amplification matrix of L, is given by

h k2

where U has the same meaning as before. if k l/Jp(x) 4 A < I for x e IR, then

Is(xw)l C I for xw ea. It follows from the theorem on page 121 in (191 that

-17-



(3.43) IL a I _ _ I( 1 Ck

where C 0 0 can be chosen independently of n.k for t e 1 0, T) The rest of the proof

proceeds in the saw manner as for losma 3.1.

Using Keller's [11I nonlinear stability-conisitency principle, we obtain the following

convergence result s

2heoren 3.1.

Let b,#.# be sufficiently smooth, b,bf e LI (e), * • 0. Also asume that the

data fOu0,u , are smooth. tAs a consequence, (3.2), (3.3) has a smooth solution v,v).

Choose the scheme (3.6), (3.10) such that 0 c max < I holds andIXSR, te0, T]
such that (3.9), (3.11) are satisfied. Then there is a unique solution

'u (n)/ ,i -n n 2^11 . C)n L n 2 of (3.6), (3.10), which fulfills the convergence

estimate

(3.44) (v n- v(xi, )) + I(v - (x,tn))L Dh 2

where D can be chosen independent of h, t n T.n

By applying the same analysis to the "dLfferenced" equations, convergence estimates in

higher Sobolev norms can be obtained.

It is clear that the numerical performance of the method very much depends on how

Ovell the second order accurate integration rule (3.8) integrates b and b' and on how

large derivatives of v and w get. Particular care must be taken for a class of

practically important kernels with the following behavior

(3.45) lb())l ( "  
, i e n, 0 < c c 1, A > o

The trapezoidal rule approximation

t .-

* I + -t/))(3.46)0 l b'()ldo S + - k/c + O
0

-18-



in utable unions 4 const. and the explicit scheme (3.6). (3.10) alsa requires this

serious restriction.

In the next chapter, we *hall deal with the special case where the kernel is a am of

exponetial*. We show in this came how stiffness problems can be avoided. Also, we

compute the convolutions recursively, which Is less time consuming than using formla

(3.6)



II

4. GOAL AILYsZS

we assume that the kernel is of the form (1 .4) and set

t -A I t-T)
(4.1) v a U V ,v U 'tst  Kt  (xXTld

0

Then (1.1) is equivalent to the system

Vt 0wVX

N

(4.2) wt - (v) s A f(x,t)

sit it NO X - Is i

and the Initial conditions u(x.O) - uO(x), ut(x.O) u(x) become

(4.3) v(x,0) - u0,x) v(x,0) - uI(x), z 1(x, 0 ) = 0

Following the recipe (3.5), we obtain the following Lax-Wendroff discretization for (4.2)

n n n k2  + n
(4.4) v +kAv + -(A A Vv)A L +

I V, I
nil nn,n+1 R n) , -,,n ++ f,
w ,,,,+, vI I IL

k2 + i n n -n N n n n

S "~(v + ,v..,, -+ - X A*,,-a(v' + a +, fI
ii I -I I i ti

n+l n + nsl " si [ ±A( ) -)ljL

K2 1K n n n n- ( (v + v_,))Av)- i A(K A*(v) - z ]

for I e 6 , n ) 0, subject to the initial conditions
(4.5) v0 0 ), w0 Ul(x ),  00

I uO(x1) v i I±. ~I
Here Zn denotes the approximation to v(xi,tn) etc. The last equation of (4.4) is stiff

for A 3o 1. We obtain the growth function
22

(4.6) Wj(A k) - I - A k (A k)
- 2 t

-20-



which fulfills loIl < I iff 0 4 Ak < 2 holds. The schine (4.4) will thus be unstable

unies k max 1 4 2 holds (for some rheological applications A may be as large as 106

[22311). Hiever, this can be repaired by making the schi (4.4) semi-implicit, e.g. by
k2 2 n 2

replacing the term - 2i by - X2 . In that case we got
Pat 2~1  024' Az 1 . nta aew e

(4.7) A(Altk) "

2

and lull I 1 if 0 < tk < -1 + 5 or hk ) 2. Moreover, we have 0 4 a I for

0 < heIi < I or hk ) 2. The growth function of the fully implicit scheme is negative

(but lose than one in modulus) for 1,k I I + A. Since this produces oscillations in the

numerical solution, the semi-implicit scheme is to e preferred.

The convergence of the scheme (4.4) is analyzed in the same fashion as in section 3,

the nontrivial step again being the stability proof. In the present situation, stability

must be shown globally in time, and not only on finite time intervals. We assume tha

situation qiven in section 2. i.e. * - *, solutions are spatially 2v-periodic (of course

the mesh size is chosen as an integral divisor of the period, and f,Uou 1 are small.

Rather than studying the stability of (4.4), we investigate the Lax-Wendreff discretization

of the symetric hyperbolic form (2.2). Although the two schemes are not equivalent, they

only differ by higher order terms negligible for the stability analysis. Zquation (2.2)

leads to the following schemes

-21-



V2 +_ k$v )w + !L =Ov V" h".. .....

n+1n ft rlnf +. ft n - n

V1  2Y' 2.Bvhv. 2 1-i

K If)} + i( i ) nn2

n . n + nw w + k Svv ~ t* + fiI
rnI

k f n 1 n 1 n - n n n n n

(4.7) 4 - [BC, )h (I v + A vVA v ) +
2 1 2 i -I i i

'4
ft n)Avi) +f.,,€V. + ,w + O,,)+)++,,

3-l ur i £ ti

m-1I

k2  
n n nn n n n]n n

+ - [ . I - , , + K ,,(-I Ig' v ,,) + ,,,)h, -i

2t 333ti1 g 1 i i tL

We first deal with the stability of the trivial solution v - w = gl = 0. The

linearization of the right hand side at this solution has the form

2  
+ - 2

L - I + kL + kL A + 1 (LALA + LoL A + LLOA + L)0 1 2 1 1 0 1 1 0 0

where LoL 1 are the constant coefficient matrices

0(o) o o 2. ..o
S1 .0 0

0 0

0 0 0 . . . 0
N

0 -1K -KI

O 0 1 + K. - +4 . ..

0 m +K

0o A4 - 1K, 4.K1  .. .- ,+4.

1+ KI ++ %+

-22-
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We expand v~w,g, in Fourier eeries:

v - v(K)e]h

Then, for the Kth Fourier component, the operator A becomes I ± (h ad
h

COMMh)-becomes 2 2 * We thus have to investigate the spectrum of the matrix

h2

L(K) - I + kL% +' t -j-nKhL (cos(Kh) - 1)

2 I 2  I 2

-L + !'-sin(Kh) (L L + L L)+- L
I 2h 0 1 1 0 2 0

For the following, we assume

(4.8) is 0(0) - conast. < 1

if K * 0 is fixed, then L(K) - I +' k(L0 +' JI + M(2 ). Since the eigenvalues of

L 04'X IO have negative real parts 6-.f. section 2), the eigenvalues of L(K) are inside

the unit circle. For K - 0, L(K). has a double eigenvalue one, the remaintng eigenvalues

are Inside the unit circle, The sigenvalue one my be transformed away in a fashion

analogous to section 2 and need not concern us further.

We have to investigate the behaviour Of L(K) as K + -. in this case, at least one

of the terms sin(Kh), cos(Kh) - I in large compared to h. The eigenvalues of L(K)

are in first order given by those of

I4' i k s in(Kh) +K cei)h ) 1  2--(o(K)-tL
h -

This operator has an N-fold eigenvalue I and the simple oigenvalues
2

1 1 i k 0(0)sin(Kh) 4' IC 0(o)(cos(Kh) - 1). if (4.8) holds, these two eigenvalues lie onh h2

an ellipse inside the unit circle. A simple perturbation analysis shows that the "-fold

eigenvalue one is perturbed into N distinct eiqjenvalues inside the unit circle, and their

distance from the unit circle is of order kc. As In section 2, there is a matrix

*1 -23-



T(K) such that T
1
CK)L(K)T(K) is dissipative; T(K),T

1
I(K) are bounded independently

of K, and for K large TK) has the form (2.5). Thus the trivial solution is stable.

As in section 2, we must show stability for the variable coefficient problem when v

is in a neighborhood of 0. There, we made use of the fact that the principal part of the

differential operator was skew-adjoint. in the discrete case, we have to investigate the

operator

k
2  

1 1Lv) I + kL(v)A + -L(v)A L( v + V A
I i 2 I i 12 i 2 i,-I)( 0 M 0 1o10)

8(v) 0 0... 0

where L (v) 0 0

All other contributions to the linearization are of order k. Let us put A - L (vi)A
+
.

Then the adjoint of A is A' = -6-LI(vi) and it is immediately verified that

k Ik
2

L (vi) - I + i (A - A*) - 4 (AA* + A*A) + O(kiv) .

A simple calculation yields

z,2 1 12 3

(I +1 (A - A*) - (A* + A*A)),
2  

, ,i- I2 ICA+ +

If - is chosen sufficiently small (but still of order 1), then an argument similar toh

section 2 guarantees the stability of the variable coefficient problem. We thus arrive at

the following result.

Theorem 4.1.

Assume that the assumption of section 2 holds and that 1 is chosen small enough.
h

Then the convergence estimate (3.44) holds uniformly in time.

-24-



5. NUMERICAL EXPERIMENTS

For all computations we used a kernel b of the form (1.4) and we employed the scheme

given by (4.4) and (4.5) with the semi-implicit modification. The spatial mesh size was

prescribed and the temporal mesh size was determined at each step such that the stability

conditions were satisfied. In particular, we chose 1 max /4(v 7) ( 0.8. The
i

calculations were performed at the VAX of the mathematics Research Center, University of

Wisconsin-Madison in double precision arithmetic.

To solve the initial value problem numerically, we introduced artificial (far out)

boundaries at x - *X, and the boundary conditions v(*X,t) - w(*X,t) - 0 (since the

initial data vanish at I). This introduces an additional error of order

O( max Iv(*X,t)I + max Iw(*X,t)I). In all the computations reported below, this
te(0,Tj teJ0,T]

quantity can safely be neglected. We performed a convergence test for the problem (3.2),

(3.3) with #(v) _ #(v) _ v + v3 ,b(a) - 0.4e
- 0

, where v(x,0), w(x,0), f(x,t) were
2

x

chosen such that the problem has the exact solution v(x,t) - (1 - x 2)e
2x

w(x,t) - -xe 2 * Table I shows the errors ev, •w (in the discrete L
2
-norm) of v

and w, rep. and the corresponding convergence rate given by Inte(h2))/In 2 at twoke(h/2 )) ~ tw
different t-values and for the maximal errors for t e (0,1]. Obviously, the scheme is

second order accurate for this smooth solution.

Table 2 shows that the L
2
-errors of v and w decay as t increases. The reason

for this is the dissipative effect of the Volterra term.

The following calculations were done using

(5.1) #(v) - *(v) - 2v + 5v
2 

+ 25v
3

(5.2) b(o) - 0.4e
0 + 0.2e

and the initial data

(5.3) (a) vr(x,0) Cv 0 (x) )(e 3x - x + x

(b) w (xO) - w0 (x) - (1 - x
2 
)ex/2

-25-



with 0 4 C ( 1. The force f(xt) was set equal to zero. i' is strictly positive for

all v e R. Figures 1 and 2 show v0 (x), w0 (x) reap., and the next plots show t-sections

of v and w, i.e. they show v and w as functions of x for fixed t-values. For

- I (large" initial data) the dissipative influence of the Volterra term is not strong

enough to avoid singularities. Figures 3-5 and 6-8 show the evolution of v and w

reap. A shock-type singularity appears at t a 0.057, x - 0.4. Then a second

(t - 0.073, x - -1.6) and a third (t - 0.12, x - 2) shock develops.

At this point we want to remind the reader that the existence of shocks for equation

(1.1) has not been proved yet, actually there is no theory of weak solutions at all.

However, it has been shown that smooth solutions may cease to exist after a finite time

(81, because vx and wt tend to infinity.

Table 3 shows the maximal values of the difference quotients Avn, nw' for

t " I and i 0 (corresponding to the singularity at x a -1.7). Halving the meshn

size approximately doubles these values, which means that the differences
tn n n ni

v - vi - n1 within the shock are piactically independent of the msh size.

Since the Lax-Wendroff method is an artificial viscosity method, we cannot expect

completely sharp shocks. A shock layer of thickness O(h) develops around the shock ([191,

section 12.14). This is illustrated by Figures 10-14, which show the left shock in Fig. 9

for various mesh sizes. We have c - I and t - 0.631. The width of the shock layer is
5

(constantly) about 3h (grid points are marked).

The *overshoot" (see also Figures 3-8) is typical for Lax-Wendroff method (D91,

section 12.14) and is due to artificial dispersion. The high wavenumber components of the

solution have a smaller wave speed and thus lag behind the shock front. The width of the

*overshoot layer" decreases with h. Outside the shock-layer and overshoot region the

solutions coincide up to the plot accuracy for h - 0.01, h - 0.02, h - 0.04.

Our convergence discussion in the previous section does of course not apply to

solutions with singularities, but it is clear that, if the Lax-Wendroff method converges

boundedly almost everywhere, then it converges to a weak solution [191.

-26-
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Therefore the presented numerical evidence indicates that weak solutions u of (1.1),

such that ut and u have shocks, exist.

1
For decreasing c the relative effect of dissipation becomes stronger. For C-

the breakdown of smooth solutions occurs at t w 2.7, while the second derivatives of the

solution of the corresponding quasilinear wave equation

(5.4) utt - #(Ux)x

(with the same initial data) blow up already at t a 2.1.

1
Figures 16-21 show the evolution of v and w for C - j. no singularLties occur

for t e 10,201, the dissipative mechanism of the Volterra term seems to produce globally

smooth solutions here. In the Figures 15-21, WIN denotes the L2-norm of v,w at the

given time t. The decay of the L2-norms with increasing t is shown in Table 4. It is

clear from Figures 15-21 that the L -norms also tend to zero as t + *.

Figures 21-26 show the corresponding plot for the wave equation (5.4) (without the

integral term). The first derivatives of v and w blow up at t a 4.7, and the energy

given by (1.3) of course remains constant for t ) 0 (apart from artificial viscosity

effects which show up in the fourth digit of the L2-norm).
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ev(h) Rate e(h) Rate

h - 0.1 4.7439746 x 10
- 3  

2.5703589 x 10
- 3

t * 0.49 h - 0.05 1.2233024 x 10
- 3  

1.96 5.916561 X 10
-4  

2.12

h - 0.025 3.091415 x 10-
4  

1.98 1.432932 x 10
.4  

2.05

h - 0.1 6.1822914 x 10
- 3  

2.2217676 x 10
- 3

t 0.96 h - 0.0S 1.5S63728 x 10
- 3  

2.00 5.859864 x 10
- 4  

1.92

h - 0.025 3.883662 x 10
- 4  

2.00 1.553665 x 10
-4  

1.92

h - 0.1 6.198451 x 10
- 3  

3.3348472 x 10
- 3

max h - 0.05 1.5611899 x 10-
3  

1.99 7.615021 x 10
.4  

2.13
teo,1]

h - 0.025 3.906411 x 10
-4  

2.00 1.809902 x 10
- 4  

2.07

Table 1. zrror. and Convergence Rates
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t *v(h - 0.1) %v(h - 0.2)

1. 6.0477392 x 10-3 2.6280316 x 10- 3

3. 3.3230997 x 10
- 3  2.6443695 x 10

- 3

S. 2.1187529 x 10
- 3 1.9864532 x 10

- 3

7. 1.4750333 x 10
-3  1.4025019 x 10O

3

9. 1.0429657 x 10
- 3  9.730021 x 10-

4

11. 6.102893 x 10- 4  5.120333 x 10
- 4

13. 2.335227 x IO- 4  
1.883220 x 10

-4

15. 2.232786 x 10-
4  1.348227 x 10 

4

Table 2. Decay of Errors

Lv Av

h - 0.1 8.748 53.19

h - 0.05 17.90 113.8

h - 0.025 34.41 223.6

Table 3. Numerically obtained values for v x.w x at t a 1, x - -1.7

t L2N : V L2N z

0. 5.3925 x 10
-2  2.88243 x 10

- 2

S. 1.20131 x 10
-
2 1.60351 K 10

- 2

10. 3.7581 x 10-
3  4.81279 x 10

- 3

15. 1.5276 x 10
-3  1.8037 x 10

-
3

Table 4. Decay of L
2
-norm due to dissipation
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